STEREO POWER AMPLIFIER
 SP=C-4 SDRVICE MANUAL

QPIONEER

MODEL SPEC-4 COMES IN TWO VERSIONS DISTINGUISHED AS FOLLOWS:

Type	Voltage	Remarks
KU	120 V only	U.S. A. model
S	$110 \mathrm{~V}, 120 \mathrm{~V}, 220 \mathrm{~V}$ and 240 V (Switchable)	General export model

[^0]
CONTENTS

1. SPECIFICATIONS 2
2. FRONT PANEL FACILITIES 3
3. CONNECTION DIAGRAM 4
4. BLOCK DIAGRAM 5
5. CIRCUIT DESCRIPTION
5.1 Power Amplifier 6
5.2 Meter Amplifier 6
5.3 Protection Circuit 7
5.4 Power Supply Circuit 9
5.5 Others 9
6. DISASSEMBLY 10
7. PARTS LOCATION 11
8. ADJUSTMENTS
8.1 Power Amplifier 14
8.2 Meter Amplifier 15
9. EXPLODED VIEWS
9.1 External Part 17
9.2 Internal Part 19
10. SCHEMATIC DIAGRAMS, P.C. BOARD PATTERNS AND PARTS LIST
10.1 Schematic Diagram and Miscellaneous Parts 22
10.2 Meter Amplifier Assembly (AWM-113) 25
10.3 Power Amplifier Assembly (AWH-065) 31
10.4 Fuse Assembly (AWR-143) 36
10.5 Power Supply Assembly (AWR-139) 38
10.6 Power Supply Assembly (AWR-140) 39
11. PACKING 40
Additional Service Manual
12. CONTRAST OF MISCELLANEOUS PARTS 42
13. EXPLODED VIEW 43
14. SCHEMATIC DIAGRAMS, P.C. BOARD PATTERN AND PARTS LIST
3.1 Schematic Diagram and Miscellaneous Parts 45
3.2 Fuse Assembly (AWR-144) 48

1. SPECIFICATIONS

Semiconductors

ICs 2
Transistors 61
Diodes 62
Power AmplifierCircuitry Current mirror loaded differential Amplifier,3-stage darlington parallel push-pull, direct-coupled OCL.
Continuous Power Output from 20 Hertz to 20,000 Hertz
(Both channels driven) . . . 180 watts per channel (4 ohms)
150 watts per channel (8 ohms)
Total Harmonic Distortion (20 Hertz to 20,000 Hertz, 8 ohms)0.01\%
75 watts per channel power output 0.01\%
1 watt per channel power output 0.01\%
Intermodulation Distortion (50 Hertz: 7,000 Hertz=4:1, 8 ohms)
Continuous rated power output 0.01\%
75 watts per channel power output 0.005\%
1 watt per channel power output 0.005\%
Frequency Response 5 Hertz to 100,000 Hertz $\pm_{1}^{0} \mathrm{~dB}$
Input (Sensitivity/Impedance) $1 \mathrm{~V} / 50 \mathrm{k}$ ohms
Output
Speaker 4 ohms to 16 ohms
Damping Factor (20 Hertz to 20,000 Hertz, 8 ohms) 100
Hum and Noise (IHF, short-circuited, A network) 115 dB
Miscellaneous
Power Requirements AC 120V 60 Hertz
Power Consumption 760 watts (UL)
Dimensions $480($ W $) \times 187(\mathrm{H}) \times 445(\mathrm{D}) \mathrm{mm}$$18-7 / 8 \times 7.3 / 8 \times 17-7 / 16$ in
Weight: Without Package $24.5 \mathrm{~kg} ; 53 \mathrm{lb} 14 \mathrm{oz}$
Furnished Parts
Connection Cord with Pin Plugs 1
Operating Instructions 1
NOTE: Downloaded from www.hifiengine.com
Specifications and the design subject to possible modification without notice due to improvements.

2. FRONT PANEL FACILITIES

POWER SWITCH

Set to ON position to energize SPEC-4. After setting to ON, there is a brief delay before sound is obtained. This is due to the operation of the muting circuit which prevents noise when the POWER is switched. This function does not indicate difficulty and normal operating condition is attained in a several seconds.

-PEAK LEVEL METERS

When speaker systems of 8 ohm nominal impedance are connected, these provide direct readout of the peak output power in Watts.

NOTE:

Speaker system impedance varies according to frequency. To obtain a precise measurement of the output power, remove speaker connections and connect 8ohm dummy loads across the SPEAKER terminals.

INPUT LEVEL CONTROLS (LEFT \& RIGHT)

Adjust the LEFT and RIGHT controls according to the output level (voltage) of the preamplifier connected to the SPEC-4's INPUT (L, R) terminals. If the controls are turned fully to the right (to the "OdB" position), then the rated input will be 1 V . Conversely, if they are turned to the left, this will yield an attenuation equal to the graduations, and the rated power output can be varied. Standard input voltages are: $0 \mathrm{~dB}=1 \mathrm{~V},-6 \mathrm{~dB}=2 \mathrm{~V}$, $-10 \mathrm{~dB}=3 \mathrm{~V},-12 \mathrm{~dB}=4 \mathrm{~V}$, and $-14 \mathrm{~dB}=5 \mathrm{~V}$.

NOTE:

Turn the controls counterclockwise to the $0 d B$ position if you are using a preamplifier with a maximum output voltage of less than 1V. In such cases, it will not be possible to yield the rated power output listed in the SPEC-4's specifications. (For example one-quarter of the power output is obtained with a preamplifier having a maximum output of 0.5 V .)

HEXAGONAL WRENCH

If any of the control knobs should happen to come loose, tighten by means of the hexagonal wrench.

3. CONNECTION DIAGRAM

Before making the connections, check that the power is off. Also, make sure that you turn the power off if you want to change over the connections when the components are operating.

4 BLOCK DIAGRAM

5. CIRCUIT DESCRIPTION

5.1 POWER AMPLIFIER

This unit is a DC amplifier with an input coupling capacitor. Generally, in direct coupled amplifiers, 100% NFB is applied at the DC stage. This technique provides a DC gain of 1 and stabilizes the circuit. The operation is performed by giving the NFB circuit a time constant. However, this adversely effects the low range phase characterisitcs in the audio frequency range.
Careful consideration has been given to stability in the circuit design of this unit; the time constant of the low range of the NFB circuit has been eliminated, and amplification is pefrormed up to the DC stage. This improves the low range phase characteristics and tonal quality. Moreover, the low range frequency response is determined by the time constant of the input coupling section.
The first stage is a PNP dual transistor differential amplifier with a current mirror circuit, which enables stable operation and provides high gain from the DC to the ultrahigh frequency range. The second stage (predriver stage) is a Class A amplifier. High voltage gain is obtained by inserting a constant current circuit for the load (voltage gain is necessary at this stage because the voltage gain of the power stage is zero). The power stage is a 3 -stage Darlington connection and the final stage is a parallel SEPP.

A power limiter circuit protects the power stage. $\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}$ and $\mathrm{D}_{4}, \mathrm{D}_{5}, \mathrm{D}_{6}$ are drive voltage limiters which prevent overdriving of the power stage. D_{3}, D_{6} shift the DC level of the signal and $\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{4}$, D_{s} conduct the overdrive voltage to prevent the power stage being overdriven.

NOTE:

Since the power supply voltage of the power stage is lower than that of the drive stage at high outputs, D_{1}, D_{2} and D_{4}, D_{5} conduct the overdrive voltage.

The power limiter is a current-detection type. This limiter detects the current forced thru the power transistor by the voltage generated by the emitter resistance of the power transistors. When the output has exceeded 180 W at a load of 4 ohms or less, $\mathrm{Q}_{13}-\mathrm{Q}_{16}$ operate to limit the drive voltage. This prevents the output from increasing even if an input greater than this is applied.

5.2 METER AMPLIFIER

A peak output meter is provided which permits direct reading of an 8 ohms load output from 0.01 W to 300 W .

The meter amplifier consists of the logarithmic compression circuit, absolute value detection circuit, peak hold circuit, and meter drive circuit shown in Fig. 2.

Fig. 1 Power amplifier circuit

The input signal is divided by R_{1}, R_{2} and sent to the logarithmic compression circuit. The logarithmic compression circuit is an audio IC (TA7136P2) and utilizes the rise characteristic of diodes D_{1}, D_{2} in the NFB loop to reduce the dynamic range of the signal. This creates an input/output characteristic which attenuates low level inputs very little and high level inputs substantially. The characteristic is compensated by inserting R_{4} in parallel with D_{1}, D_{2} and the circuit is temperature compensated with a thermistor so that the meter scale is almost logarithmically graduated from 0.01 W to 300 W .
The compressed signal is applied to the absolute value detector. This circuit produces a reverse phase signal by means of Q_{2} and extracts and combines the positive half cycle by means of Q_{3} and Q4. This signal charges C_{1} up to the peak value and drives the meter by means of Qs, Q6. The charge across C_{1} is discharged at the time constant of C_{1} and R_{5} to determine the fall time of the peak indication of the meter.
The frequency response of the peak meter is given in Fig. 3.

Absolute value detector

Fig. 4 Block diagram of protection circuit

5.3 PROTECTION CIRCUIT

This circuit protects the power transistors in case of overload, the speakers in case of power amplifier malfunction, and also performs a muting function when the power supply is turned ON or OFF. The protection circuit is composed of three sections (Fig. 4).

1. Relay Driver Circuit (Fig. 5)

The relay which connects the output circuits is driven by this circuit. It also performs a muting function to prevent unpleasant noise during ONOFF operation of the power supply as well as opening the output circuit on command from the detettor circuits.

Fig. 2 Meter amplifier circuit

Fig. 3 Frequency response of the peak meter

Muting Operation

When the power supply is turned $O N, Q_{11}$ base is reverse biased through D_{2} and R_{22}, turning $Q_{11} O F F$ Q_{12} base potential rises as C_{1} charges through $R_{1} \&$ R_{2}, and $Q_{12} \& Q_{13}$ turn ON several seconds later. The collector current of Q_{13} then flows through the relay coil, operating the relay to turn on the power amplifier output circuit. The reverse bias of Q_{11} base from $D_{2} \& R_{22}$ disappears when the power supply is set from ON to OFF. Q ${ }_{11}$ remains ON however, due to the residual power supply voltage. C_{1} very rapidly discharges, Q_{12} base potential drops and $Q_{12} \& Q_{13}$ turn OFF. The relay releases and the power amplifier output circuit turns OFF.

NOTE:
Q_{10} is normally OFF due to base bias and does not participate in the muting operation.

Fig. 5 Relay drive circuit

Operation by Detector Circuit Command

Command from the detector circuits pass through one of D_{3}, D_{4} or D_{5} and are applied in the form of a current flow. Q_{10} is normally reverse biased through R_{8}, but when a large current flows through on of these diodes, Q_{10} base potential declines according to the voltage drop at R_{8}. Q_{10} then turns $O N, Q_{11}$ base potential rises and Q_{11} turns $O N . C_{1}$ rapidly discharges and Q_{12} base potential drops, turning $Q_{12} \& Q_{13}$ OFF. The relay releases and the power amplifier output circuit becomes cut off.

2. Overload Detector Circuit

Shorting of the power amplifier load or a load impedance below the specified value causes a command to be sent to the relay drive circuit. This is illustrated in Fig. 6.
With the output stage in class B operation, when Qa is operating in the positive half cycle, $\mathbf{Q b}$ becomes cut off and the signal current flows as indicated by the solid arrows in Fig. 6. Point D potential at this time is the point A potential divided by R_{49} and R_{50}. Also, point C potential is
the point A potential divided by Re_{1} and $R L$ (load). Point D is connected to Q_{12} base and point C to Q_{12} emitter through R_{48} and Re_{2}. When $R L$ is extremely small, the point C potential becomes considerably lower than point D. This potential difference forward biases $Q_{12} . Q_{12}$ turns $O N$ and current flows in D_{3}.
Qb operates in the negative half cycle and Qa becomes cut off. The signal flows is indicated by the broken line arrows in the center of Fig. 6. Q_{12} is biased by the potential difference between point C and point E. If RL is extremely small, the point C potential becomes considerably higher than that of point E. Q_{12} turns $O N$ and current flows in D_{3}.
If large current flows in Qa and $\mathrm{Qb}, \mathrm{Q}_{12}$ becomes ON due to the Re_{1} and Re_{2} voltage drops, and current flows in $\mathrm{D}_{3} . \mathrm{C}_{24}$ prevents faulty operation due to external noise.

Fig. 6 Overload detector

3. Center Point Potential Detector Circuit

If a DC potential is produced at the junction point of the power amplifier, a command is sent to the relay drive circuit. Fig. 7 shows this operating principle.
Q_{8} and Q_{9} compose a differential amplifier. When the same input is applied to both input terminals (Q_{8} and Q_{9} bases), no output is present. However, if there is a difference between the terminal inputs, the difference is amplified and becomes the output between the two collectors. During normal operation, an AC signal only is present at the junction point. As C_{3}, C_{4} reactance is sufficiently low, the same signal is applied to Q_{8} and Q_{9} bases, resulting in an absence of output at the collector sides. When a DC potential is produced at the junction point, it becomes the input of Q_{9} only. If the voltage is negative, Q_{9} collector current declines.
and at Q_{8} the collector current increases and the potential drops, causing current to flow through D_{s}.
If the DC voltage is positive, Q_{9} collector current increases and the potential drops, while at Q_{8} the collector current decreases and the potential rises. Current therefore flows through D_{4}.

Fig. 7 Center point potential detector

5.3 POWER SUPPLY CIRCUIT

Two power transformers are used. The left channel and right channel power stage power supplies are independent. Power is supplied to each channel by a bridge rectifier and two $22,000 \mu \mathrm{~F}$ high capacity capacitors. The power supply before the predriver and for the main amplifier, protection circuit, etc. is supplied to each part thru a bridge rectifier and minus and plus voltage regulators by connecting the windings (different from that of the power stage) of the two power transformers in series.

Surge Current Countermeasures

When the power of an amplifier having two high capacity power supplies such as this unit is turned ON, an extremely large rush current flows. The time the left and right power transformers are powered is staggered somewhat in this amplifier to reduce this rush current to a minimum.
When the power switch is turned ON, T_{2} (right channel power transformer) is immediately powered, but since the relay contacts are open, T_{1} (left channel power transformer) is not powered. When current flows in the coil of the relay, the relay contacts are closed and T_{1} is powered. The rush current is reduced by one half during this $7-9 \mathrm{msec}$ delay.

Fig. 8

5.5 OTHERS

The electrolytic capacitor ground connection is a $20 \mathrm{~mm} \times 2 \mathrm{~mm}$ copper plate.
A cord (inner conductor $2.03 \phi, 0.254 \phi \times 41$ stands) having a DC resistance of about $1 / 4$ that of common elecrric wire is used in the power supply, output, and ground circuits.
The input attenuator covers the 0 to -20 dB range in 22 steps. The final position is $-\infty$.

6. DISASSEMBLY

Top cover

Remove the 12 screws(A) to detach the top cover.

Front panel

Loosen the set screws of the 2 LEVEL knobs with an hexagonal wrench and remove all the knobs. Remove the 8 screws(B) and 2 nuts(D) to detach

Fig. 9

7. PARTS LOCATION

Front View with Panel Removed

Variable resistor $100 \mathrm{k} \Omega$
LEFT (LEVEL)
ACV-021

Power amplifier assembly AWH-065

Power amplifier assembly AWH-065

Heat sink
Relay

Heat sink

ASR-041

Electrolytic capacitor $22,000 \mu \mathrm{~F} / 80 \mathrm{~V}$ ACH-056

Power transformer (LEFT)
ATT-416

Power transformer (RIGHT) ATT-417

Bottom View

Rear Panel View

8. ADJUSTMENTS

8.1 POWER AMPLIFIER

DC Balance Adjustment

Do not connect load to speaker output terminals. Set LEVEL control to minimum (fully counterclockwise).
Adjust VR_{1} for 0 V at the speaker output terminals (between + and -):

Idle current Adjustment

Do not connect load to speaker output terminals. Set LEVEL control to minimum (fully counterclockwise).
Adjust VR_{2} for 50 mV between terminal No. 26 (+) and No. $16(-)$. Confirm that $50 \mathrm{mV} \pm 10 \mathrm{mV}$ appears between terminals No. 25 (+) and No. 17 (-). Readjust after power has been applied for more than 10 minutes.

Power Limiter Adjustment

Connect a 4 ohms resistor and distortion meter, oscilloscope, and AC voltmeter to the speaker output terminals (See Fig. 11). Apply a 1 kHz signal to the input terminals and adjust the input signal level for a $200 \mathrm{~W}(28.29 \mathrm{~V} / 4 \Omega)$ output. At the same time, adjust $\mathrm{VR}_{3}, \mathrm{VR}_{4}$ for a distortion of 0.03%. VR_{4} adjusts the positive half cycle limiter and VR_{3} adjusts the negative half cycle. Observe the waveform with the oscilloscope and adjust so that the waveform is symmetrical.

Fig. 10 Power amplifier

Fig. 11 Connection diagram for power limiter adjustment

8.2 METER AMPLIFIER

Connect an AC voltmeter to the speaker output terminals and apply a 1 kHz signal to the input terminals and adjust the input signal level so that the voltmeter indicates 34.64 V . At the same time, adjust VR_{1} (R channel) and VR_{2} (L channel) so that the output meter indicates 0 dB .

Fig. 12 The position of $V R_{1}$ and $V R_{2}$

Fig. 13 Connection diagram for meter amplifier adjustment

9. EXPLODED VIEWS

NOMENCLATURE OF SCREWS, WASHERS AND NUTS

The following symbols stand for screws, washers and nuts as shown in exploded view.

Symbol	Description	Shape
RT	Brazier head tapping screw	\square
PT	Pan head tapping screw	0
BT	Binding head tapping screw	\square
CT	Countersunk head tapping screw	\square
TT	Truss head tapping screw	M
OCT	Oval countersunk head tapping screw	0
PM	Pan head machine screw	\square
CM	Countersunk head machine screw	\square
OCM	Oval countersunk head machine screw	\square
TM	Truss head machine screw	\square
BM	Binding head machine screw	\square
PSA	Pan head screw with spring lock washer	Com
PSB	Pan head screw with spring lock washer and flat washer	$0: \infty$
PSF	Pan head screw with flat washer	O

Symbol	Description	Shape
EW	E type washer	(f) ${ }^{6}$
FW	Flat washer	(0)
SW	Spring lock washer	(1)
N	Nut	(-) 8
WN	Washer faced nut	(0) Bl
ITW	Internal toothed lock washer	(3)
OTW	Outernal toothed lock washer	50\%
SC	Slotted set screw (Cone point)	$\theta \square$
SF	Slotted set screw (Flat point)	θ
HS	Hexagon socket headless set screw	(0) 3
OCW	Oval countersunk head wood screw	$\sqrt{\square}$
CW	Countersunk head wood screw	D
RW	Round head wood screw	\bigcirc

EXAMPLE

Center Chassis Block

NOTE:

Parts indicated in green type cannot be supplied.

Rear Panel Block

NOTE:
Parts indicated in green type cannot be supplied.

10. SCHEMATIC DIAGRAMS, P.C. BOARD PATTERNS AND PARTS LIST

10.1 SCHEMATIC DIAGRAM AND MISCELLANEOUS PARTS

Miscellaneous Parts List

SWITCHES

Symbol	Description
S1	Lever switch (POWER)
S2	Relay
LAMPS AND FUSES	
Symbol	Description
PL1	Lamp (bar type) $8 \mathrm{~V}, 300 \mathrm{~mA}$
PL2	Lamp (bar type) $8 \mathrm{~V}, 300 \mathrm{~mA}$
PL3	Lamp (bar type) $8 \mathrm{~V}, 300 \mathrm{~mA}$
PL4	Lamp (bar type) $8 \mathrm{~V}, 300 \mathrm{~mA}$
FU1	Fuse 6A
FU2	Fuse 6A
FU3	Fuse 1.5A
FU4	Fuse 1A
FU5	Fuse 1A

TRANSFORMERS

Symbol	Description
T1	Power transformer (L)
T2	
	Power transformer (R)

POTENTIOMETERS

Symbol	Description
VR1	Variable resistor 100k Ω (LEVEL)
VR2	Variable resistor 100k Ω (LEVEL)

CAPACITORS

Symbol	Description			Part No.
C1	Electrolytic	22,000	80 V	ACH-056
C2	Electrolytic	22,000	80 V	ACH-056
C3	Electrolytic	22,000	80 V	ACH-056
C4	Electrolytic	22,000	80 V	ACH-056
C5	Ceramic	0.01	250 V	ACG-001
C6	Polypropylene	33p	50 V	COSB 330K 50
C7	Polypropylene	68p	50 V	CaSB 680K 50
C8	. ${ }^{\text {a }}$.
C9	Ceramic	0.01	250 V	ACG-001

NOTE:

- Capacitors: in μF unless otherwise noted p:pF
- Resistors: in $\Omega, 1 / 4 W$ unless otherwise noted $k: k \Omega, M: M \Omega$

SEMICONDUCTORS

Symbol	Description	Part No.
Q1	Transistor	$\begin{aligned} & \text { 2SD424-R or } \mathrm{O} \\ & \text { (2SD555-R or S) } \end{aligned}$
Q2	Transistor	$\begin{aligned} & \text { 2SD424-R or } \mathrm{O} \\ & \text { (2SD555-R or S) } \end{aligned}$
Q3	Transistor	$\begin{aligned} & \text { 2SB554-R or O } \\ & \text { (2SB600-R or S) } \end{aligned}$
Q4	Transistor	$\begin{aligned} & \text { 2SB554-R or O } \\ & \text { (2SB600-R or S) } \end{aligned}$
Q5	Transistor	$\begin{aligned} & \text { 2SD424-R or O } \\ & \text { (2SD555-R or S) } \end{aligned}$
Q6	Transistor	$\begin{aligned} & \text { 2SD424-R or O } \\ & \text { (2SD555-R or S) } \end{aligned}$
07	Transistor	$\begin{aligned} & \text { 2SB554-R or O } \\ & \text { (2SB600-R or S) } \end{aligned}$
08	Transistor	$\begin{aligned} & \text { 2SB554-R or } O \\ & \text { (2SB600-R or S) } \end{aligned}$

OTHERS

Description	Part No.
Power amplifier assembly	AWH-065
Meter amplifier assembly	AWM-113
Power supply assembly	AWR-139
Power supply assembly	AWR-140
Fuse assembly	AWR-143
Peak meter	AAW-068
AC socket (AC OUTLET)	AKP-002
Terminal (OUTPUT)	AKE-037
2P terminal (INPUT)	AKB-034
Termmal (GND)	AKE-019
5P housing	AKX-017
6 P housing	AKX-018
Contact piece	AKF-028
AC power cord	ADG-013
Lamp socket	AKK-002

RESISTORS

Symbol	Description			Part No.	Symbol	Description			Part No.
VR1	Semi-fixed	6.8k-B		ACP-060	R49	Carbon film	4.7M		RD1/2PS 475J
VR2	Semi-fixed	6.8k-B		ACP-060	R50	Carbon film	4.7M		RD1\%PS 475J
					R51	Carbon film	1.2k		RD1⁄2PS 122J
R1	Carbon film	56k		RD1/4PS 563J	R52	Carbon film	1.2k		RD $1 / 4$ PS 122J
R2	Carbon film	100		RD1/4PS 101J	R53	Carbon film	1k		RD1/4PS 102J
R3	Carbon film	68k		RD1/2PS 683J					
R4	Carbon film	5.1k		RD1/4PS 512J	R54	Carbon film	1k		RD $1 / 2 \mathrm{PS}$ 102J
R5	Carbon film	15k		RD1/4PS 153J	R55	Carbon film	22k		RD $1 / 4$ PS 223 J
					R56	Carbon film	22k		RD $1 / 4 \mathrm{PS}$ 223J
R6	Carbon film	47k		RD1/4PS 473J	R57	Carbon film	3.3k		RD1/PS 332J
R7	Carbon film	15k		RD1/4PS 153J	R58	Carbon film	3.3k		RD $1 / 4 \mathrm{PS} 332 \mathrm{~J}$
R8	Carbon film	150k		RD1/4PS 154J					
R9	Carbon film	5.6k		RD1/4PS 562J	R59	Carbon film	3.3k		RD $1 / 4$ PS 332J
R10	Carbon film	2.2 k		RD1/4PS 222J	R60	Carbon film	3.3 k		RD1/4PS 332J
					R61	Carbon film	22k		RD $1 / 4 \mathrm{PS}$ 223J
R11	Carbon film	82		RD1/4PS 820 J	R62	Carbon film	22k		RD1/4PS 223J
R12	Carbon film	82		RD1/4PS 820 J	R63	Carbon film	22k		RD1/4PS 223J
R13	Carbon film	15k		RD1/4PS 153J					
R14	Carbon film	15k		RD1/4PS 153J	R64	Carbon film	22k		RD1/4PS 223J
R15	Carbon film	2.2k		RD1/4PS 222J	R65	Carbon film			RD $1 / 4 \mathrm{PS}$ 105J
					R66	Carbon film	$1 \mathrm{M}$		RD $1 / 4$ PS 105J
R16	Carbon film	62k		RD1/2PS 623J	R67	Carbon film	100k		RD\%PS 104J
R17	Carbon film	62k		RD1/4PS 623J	R68	Carbon film	100k		RD1/4PS 104J
R21	Carbon film	5.1k	-	RD1/4PS 512J					
R22	Carbon film	1k		RD1/4PS 102J					
R23	Carbon film	$3.3 \mathrm{k}$	1/2W	RD $1 / 2$ PSF 332 J					
R24	Metal oxide	2.2k	1W	RS1P 222J	CAPACIT				
R25	Carbon film	30k		RD1/4PS 303J					
R26	Carbon film	13k		RD1/4PS 133J	Symbol	Description			Part No.
R27	Carbon film	11k		RD1/4PS 113J					
R28	Carbon film	43k		RD1/4PS 433J	C1	Electrolytic Electrolytic		$10 \mathrm{~V}$ $50 \mathrm{~V}$	CEA 221P 10
R29	Metal oxide	2.7k		RS2P 272 J	C3	Electrolytic	2.2 470	50 V 6 V	ACH-317 CEA 471P 6
R30	Metal film	13k	$1 / 5 \mathrm{~W}$	RN1/5SQ 1302F	C4	Electrolytic	470	6 V	CEA 471P 6
R31	Metal film	13k	1/5W	RN1/5SQ 1302F	C5	Ceramic	100p	50 V	CCDSL 101K 50
R32	Metal film	23.7k	1/5W	RN1/5SQ 2372F					
R33	Metal film	23.7k	1/5W	RN1/5SQ 2372F	C6	Ceramic	100p	50 V	CCDSL 101K 50
	Metal 10			ANTSSQ 2372	C7	Electrolytic	3.3	63 V	CEA 3R3P 63
R34	Carbon film	16k		RD $1 / 4 \mathrm{PS} 163 \mathrm{~J}$	C8	Electrolytic	3.3	63 V	CEA 3R3P 63
R35	Carbon film	16k		RD $1 / 4 \mathrm{PS}$ 163J	C9	Ceramic	470p	50 V	CKDYB 471K 50
R36	Carbon film	15k		RD1/4PS 153J	C10	Ceramic	470p	50 V	CKDYB 471K 50
R37	Carbon film	15k		RD1/4PS 153J					
R38	Carbon film	22k		RD1/4PS 223J	C11 C12	Electrolytic Electrolytic	47 47	80 V 80 V	CEA 470P 80 CEA 470P 80
R39	Carbon film	22k		RD1⁄2PS 223J	C13	Electrolytic	330	100 V	ACH-076
R40	Metal oxide	470	2W	RS2P 471J	C14	Electrolytic	330	100 V	ACH-076
R41	Carbon film	8.2k		RD1/4PS 822J	C15	Ceramic	100p	50 V	CCDSL 101K 50
R42	Carbon film	22k		RD1/4PS 223J					
R43	Carbon film	10k		RD1/4PS 103J	C16 C 17	Electrolytic Electrolytic	33 47	25 V 16 V	CEA 330P 25 CEA 470P 16
R44	Carbon film	10k		RD1/4PS 103J	C18	Electrolytic	470	6 V	CEA 471P 6
R45	Carbon film	470k		RD\%PS 474J	C19	Electrolytic	470	6 V	CEA 471P 6
R46	Carbon film	470k		RD1/4PS 474J	C20	Ceramic	33p	50 V	CCDSL 330K 50
R47	Carbon film	5.1k		RD1/4PS 512J					
R48	Carbon film	5.1k		RD\%PSS 512J	C21 C 22	Ceramic Ceramic	33p 470 p	50 V 50 V	CCDSL $330 K 50$ CKDYB 471 K 50
					C23	Ceramic	470p	50 V	CKDYB 471K 50
					C24	Electrolytic	2.2	50 V	CEA 2R2P 50
					C25	Electrolytic	2.2	50 V	CEA 2R2P 50

Symbol	Description			Part No.	Symbol	Description	Part No.
C26	Electrolytic	2.2	50 V	CEA 2R2P 50	Q13	Transistor	2SC1384-R
C27	Electrolytic	2.2	50 V	CEA 2R2P 50			(2SC1384-Q)
C28	Electrolytic	3.3	50 V	CEA 3R3P 50			(2SC1166-Y)
C29	Electrolytic	3.3	50 V	CEA 3R3P 50			(2SC1166-O)
C30	Electrolytic	47	16 V	CEA 470P 16			
					Q14	IC	TA7136P2
C31	Electrolytic	47	16 V	CEA 470P 16	015	IC	TA7136P2
C32	Electrolytic	47	25 V	CEA 470P 25	Q16	Transistor	2SC945A-Q
C33	Electrolytic	47	25V	CEA 470P 25			(2SC945A-R)
					0.17	Transistor	$2 S C 945 A-Q$
					Q18	Transistor	2SC945A-Q
							(2SC945A-R)
SEMICONDUCTORS					Q19	Transistor	2SC945A-Q
							(2SC945A-R)
Symbol	Description			Part No.	Q20	Transistor	2SC945A-Q
Q1	Transistor			2SD381-N			(2SC945A-R)
				(2SD381-M)	Q21	Transistor	
				(2SD381-L)	Q21	Transistor	(2SC945A-R)
02	Transistor			2SB536-N	022	Transistor	2SC945A-Q
				(2SB536-M)			(2SC945A-R)
				(2SB536-L)	Q23	Transistor	2SC945A-Q
Q3	Transistor			2SC1890A-E			(2SC945A-R)
				(2SC1890A-F)	024	Transistor	
				(2SC869-D)	Q24	Transistor	(2SC945A-R)
				(2SC869-C)	025	Transistor	2SC945A-Q
Q4	Transistor			2SA893A-D			(2SC945A-R)
				(2SA893A-E)	Q26	Transistor	
				(2SA628A-D)			$\{2 S C 1890 A-F)$
				(2SA628A-C)			(2SC869-D)
05	Transistor			2SC869-D			(2SC869-C)
				(2SC869-C)	Q27	Transistor	
				(2SC1649-N)			(2SA893A-E)
				(2SC1649-M)			(2SA628A-D)
06	Transistor			2SA628A-D			(2SA628A-C)
				(2SA628A-C)			
				(2SA834-N)	D1	Zener diode	WZ-081
				(2SA834-M)	D2	Diode	1 S 2473
							(1S1555)
07	Transistor			2SD381-L	D3	Diode	152472
d	Transistor			2SD381-L			(1S1554)
Q8	Transistor				D4	Diode	1 S 2473
				(2SC945A-R)			(1S1555)
					D5	Diode	1S2473
09	Transistor						(1S1555)
				(2SC945A-R)	D7	Diode	EQA01-33R
Q10	Transistor			2SA733-Q	D8	Diode	(1S1554)
				(2SA733-R)			
011	Transistor			2SC945A-Q			(151555)
				(2SC945A-R)	D9	Diode	1S2473
Q12	Transistor			$\begin{aligned} & \text { 2SC945A-Q } \\ & \text { (2SC945A-R) } \end{aligned}$			(1S1555)
					D10	Diode	1S2473
*hfe of these transistors (Q8, Q9, Q11, Q12 should have the same value.							(1S1555)
				D11	Diode	1S2473	
						(1S1555)	

Symbol	Description	Part No.
D12	Diode	$\begin{aligned} & \text { 1S2473 } \\ & \text { (1S1555) } \end{aligned}$
D13	Diode	$\begin{aligned} & \text { 1S2473 } \\ & \text { (1S1555) } \end{aligned}$
D14	Zener diode	XZ-235
D15	Zener diode	XZ-235
TH1	Thermistor	31 D27
TH2	Thermistor	31D27

OTHER

Symbol Description

Heat sink

Part No.
ANH-117

List of Changed Parts for Ractory Modification

Symbol	Description	Part No.

RESISTORS AND POTENTIOMETERS

Symbol	Description		
TH1	Thermistor		
TH2	Thermistor		
VR1	Semi-fixed	470-B	
VR2	Semi-fixed,	470-8	
VR3	Semi-fixed	100-B	
VR4	Semi-fixed	100-B	
R1	Carbon film	560k	
R2	Carbon film	22	
R3	Carbon film	22	
R4	Carbon film	62k	
R5	Carbon film	62k	
R6	Carbon film	120k	
R7	Carbon film	1k	
R8	Carbon film	47k	
R9	Carbon film	470	
R10	Carbon film	100	
R11	Carbon film	1.5k	
R12	Carbon film	1.5k	
R13	Carbon film	620	
R14	Carbon film	68k	-
R15	Carbon film	220	
R16	Carbon film	330	
R17	Carbon film	47	
R18	Carbon film	470	
R19	Metal oxide	10	2W
R20	Carbon film	33	
R21	Carbon film	33	
R22	Carbon film	18k	
R23	Carbon film	22	
R24	Carbon film	22	
R25	Carbon film	4.7k	
R26	Carbon film	4.7k	
R27	Carbon film	200	
R28	Carbon film	200	
R29	Carbon film	330	
R30	Carbon film	330	
R31	Carbon film	27	
R32	Carbon film	27	
R33	Carbon film	220	$1 / 2 \mathrm{~W}$
R34	Carbon film	220	1/2W
R35	Carbon film	100	$1 / 2 \mathrm{~W}$
R36	Carbon film	100	1/2W
R37	Wire wound	0.5	5W
R38	Wire wound	0.5	5W
R39	Wire wound	0.5	5W
R40	Wire wound	0.5	5W

Part No.
TH101-2
TH101-2
ACP-033
ACP. 033
ACP-032
ACP-032
RD1/PSS 564J
RD1/4PS 220J
RD1/4PS 220J
RD1/4PS 623J
RD1/4PS 623J
RD1/PS $124 J$
RD1/PS 102J
RD1/4PS 473J
RD $1 / 4 \mathrm{PS}$ 471J
RD1/4PS 101J
RD1/2PSF 152J
RD1\%PSF 152 J
RD $1 / 2$ PSF 621J
RD1/4PS 683J
RD1\%PSF 221J
RD1⁄2PSF 331J
RD1/4PS 470J
RD1/PS 471J
RS2P 100J
RD1/2PSF 330J
RD14PSF 330J
RD1/4PS 183J
RD 14 PSF 220 J
RD $1 / 4$ PSF 220J
RD1/4PS 472J
RD1/PS 472J
RD14PSF 201J
RD1\%PSF 201J
RD1/4PSF 331
RD14PSF 331J
RD1/4PS 270J
RD1⁄4PS 270J
RD1⁄2PSF 221J
RD1⁄2PSF 221J
RD½PSF 101J
RD1/2PSF 101J
RT5B OR5K
RT5B OR5K
RT5B 0R5K
RT5B 0R5K

Symbol	Description	
R41	Metal oxide	10
R42	Carbon film	4.7
R43	Carbon film	4.7
R44	Carbon film	100
R45	Carbon film	100
R46	Carbon film	100
R47	Carbon film	100
R48	Carbon film	1.3k
R49	Carbon film	1.3k
R50	Carbon film	15k
R51	Carbon film	15k
R52	Carbon film	120k

CAPACITORS

Symbol	Description			Part No.
C1	Electrolytic	100	80 V	CEA 101P 80
C2	Electrolytic	100	80 V	CEA 101P 80
C3	Electrolytic	100	80 V	CEA 101P 80
C4	Electrolytic	100	80 V	CEA 101P 80
C5	Ceramic	0.01	150 V	ACG-004
C6	Ceramic	0.01	150 V	ACG-004
C7	Polyester	1	250 V	CQEA 105K 250
C8	Polystyrene	56p	50 V	COSH 560K 50
C9	Ceramic	47p	50 V	CCDSL 470K 50
C10	Ceramic	47p	50 V	CCDSL 470K 50
C11	Ceramic	330p	50 V	CKDYB 331K 50
C12	Ceramic	3900p	50 V	CKDYB 392K 50
C13	Polyester	1	250 V	CQEA 105K 250
C14	Ceramic	10p	50 V	CCDSL 100F 50
C15	Ceramic	8 p	50 V	CCDSL 080F 50
C16	Polyester	1	250 V	CQEA 105K 250
C17	Ceramic	330p	50 V	CKDYB 331K 50
C18	Ceramic	56p	500 V	CCDSL 560K 500
C19	Ceramic	56p	500 V	CCDSL 560K 500
C20	Ceramic	0.047	50 V	CKDYF 473Z 50
C21	Ceramic	0.047	50 V	CKDYF 473Z 50
C22	Ceramic	0.01	150 V	ACG-004
C23	Ceramic	0.01	150 V	ACG-004
C24	Electrolytic	0.22	10 V	CSSA R22M 10
C25	Mylar	0.01	400 V	CQMA 103K 400
C26	Ceramic	0.01	150 V	ACG-004

SEMICONDUCTORS

Symbol	Description	Part No.
Q1	Transistor	2SA798-G
Q2	Transistor	$\begin{aligned} & \text { 2SC1775A-E } \\ & (2 S C 1775 A-D) \end{aligned}$
Q3	Transistor	$\begin{aligned} & \text { 2SC1775A-E } \\ & \text { (2SC1775A-D) } \end{aligned}$
* hfe of these transistors ($22, Q 3$) should have the same value.		
Q4	Transistor	$\begin{aligned} & 2 S C 1439-V \\ & (2 S C 1439-B) \end{aligned}$
Q5	Transistor	$\begin{aligned} & \text { 2SA858-V } \\ & \text { (2SA858-B) } \end{aligned}$
Q6	Transistor	$\begin{aligned} & \text { 2SA733-Q } \\ & \text { (2SA733-R) } \end{aligned}$
Q7	Transistor	$\begin{aligned} & 2 S C 945 A-Q \\ & (2 S C 945 A-P) \end{aligned}$
Q8	Transistor	$\begin{aligned} & \text { 2SC1904A-V } \\ & (2 S C 1904 A-B) \end{aligned}$
Q9	Transistor	$\begin{aligned} & \text { 2SA899A-V } \\ & \text { (2SA899A-B) } \end{aligned}$
* hfe of these transistors ($08, \mathrm{Q} 9$) should have the same value.		
Q10	Transistor	$\begin{aligned} & \text { 2SD608A-R } \\ & \text { (2SD608A-S) } \\ & \text { (2SD608A-Q) } \end{aligned}$
Q11	Transistor	$\begin{aligned} & \text { 2SB628A-R } \\ & \text { (2SB628A-S) } \\ & \text { (2SB628A-Q) } \end{aligned}$

* hfe of these transistors (Q10, Q11) should have the same value.

Q12	Transistor	$\begin{aligned} & 2 \text { 2SC869-C } \\ & \text { (2SC869-D) } \end{aligned}$
Q13	Transistor	$\begin{aligned} & 2 S C 945 A-Q \\ & (2 S C 945 A-P) \end{aligned}$
Q14	Transistor	$\begin{aligned} & \text { 2SA733-Q } \\ & \text { (2SA733-R) } \end{aligned}$
D1	Diode	152473
D2	Varistor	SV-04
D3	Varistor	SV-04
D4	Varistor	STV3H-G
D5	Varistor	STV3H-G
D6	Diode	152473
D7	Diode	1S2473
D8	Diode	152471
D9	Diode	1 S 2471
D10	Diode	10E2 (1S1886)
D11	Diode	10E2 (1S1886)
D12	Diode	10E2 (1S1886)
D13	Diode	10E2 (1S1886)
D14	Diode	10E2 (1S1886)
D15	Diode	10E2 (1S1886)
D16	Diode	152472
D18	Diode	152471
D19	Diode	152471
D20	Diode	152471
D21	Diode	152471

OTHERS

Symbol	Description		Part No.
L1	AF choke coil	$1.1 \mu \mathrm{H}$	ATH-012
S1	Relay		ASR-035
	Heat sink		ANH-340
	5P plug		AKM-019
	6P plug		AKM-020
	Screw 3×10		ABA-144

List of Changed Parts for Factory Modification

Symbol	Description	Part No.

Parts List of Fuse Assembly (AWR-143)

CAPACITORS

Symbol Description

C1	Mylar	0.01	400 V
C2	Ceramic	0.01	125 V

Part No.
CQMA 103K 400
ACG-003

SEMICONDUCTORS

Symbol		Description
D1		Diode
D2		Diode
D3		Diode
D4		Diode

Part No.

SIB01-04
SIB01-04
SIB01-04 SIB01-04

OTHERS

Symbol

Description
Fuse clip Fuse clip

Part No.
AKR-013 AKR-030
10.5 POWER SUPPLY ASSEMBLY (AWR-139)

Foil side

Parts List of Power Supply Assembly (AWR-139)

RESISTORS

Symbol	Description			Part No.
R1	Metal film	8.2k	1W	RS1P 822
R2	Metal film	8.2k	1W	RS1P 822 J

CAPACITORS

Symbol	Description			Part No.
C1	Mylar	0.01	400 V	CQMA 103K 400
C2	Mylar	0.01	400V	CQMA 103K 400

10.6 POWER SUPPLY ASSEMBLY (AWR-140)

Foil side

Parts List of Power Supply Assembly (AWR-140)

RESISTORS

Symbol		Description			Part No.
R1	Metal film	8.2 k	1W	RS1P 822J	
R2	Metal film	8.2 k	1W	RS1P 822J	

SEMICONDUCTORS

Symbol	Description		Part No.
D1	Diode		S5151
		(SS5)	
D2	Diode		S5151R
		(SS5R)	

CAPACITORS

Symbol				Part No.	
C1	Mylar		0.01	400 V	CQMA 103K 400
C2	Mylar	0.01	400 V	CQMA 103K 400	

11. PACKING

[^0]: - This service manual is applicable to $K U(p 2-p 40)$ and $S(p 41-p 48)$ types.
 - For servicing of S type please refer to KU type with the exception of descriptions in the Additional Service Manual ($p 41-p 48$).

